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We present a numerical analysis of the mean-field theory for the structure of semiflexible polymer solutions
near spherical surfaces, and use the framework to study the depletion characteristics of semiflexible polymers
near colloids and nanoparticles. Our results suggest that the depletion characteristics depend sensitively on the
polymer concentrations, the persistence lengths, and the radius of the particles. Broadly, two categories of
features are identified based on the relative ratios of the persistence lengths to the correlation length of the
polymer solution. For the limit where the correlation length is larger than the persistence length, the correlation
length proves to be the critical length scale governing both the depletion thickness and the curvature effects. In
contrast, for the opposite limit, the depletion thickness and the curvature effects are dependent on a length scale
determined by an interplay between the persistence length and the correlation length. This leads to nontrivial
�numerical� scaling laws governing the concentration and radii dependence of the depletion thicknesses. Our
study also highlights the manner by which the preceding features rationalize the parametric dependencies of
insertion free energies of small probes in semiflexible polymer solutions.
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Recent developments in experimental tools such as mi-
crorheology and particle tracking measurements have led to
considerable interest in quantifying the equilibrium and dy-
namical characteristics in mixtures of polymer solutions and
probe particles �1–5�. Motivation for a fundamental under-
standing of such issues also arise from numerous biological
phenomena involving the behavior of globular proteins in
crowded macromolecular environments �6,7�. Fundamental
to such applications is an understanding and knowledge of
the structure of polymer solutions around the spherical
probes. For instance, microrheology experiments have dem-
onstrated that to render a quantitative equivalence between
the microrheology and macrorheology measurements, one
needs to account for the mechanical properties of polymer
depletion layer around the particles �1–4�. Moreover, the sta-
bility of proteins and their interactions in crowded macromo-
lecular media are also intimately tied to the perturbations of
the equilibrium polymer structure caused by the introduction
of proteins �6–8�.

Motivated by the above issues, many researches have ex-
amined the structure of flexible polymer solutions around
spherical particles, and pertinent results have been obtained
using a variety of analytical, numerical, and simulation
methods �9–16�. In contrast to the situation for flexible poly-
mers, much less theoretical advances have occurred in the
more biologically and experimentally relevant context of
mixtures of semiflexible or rodlike polymer solutions and
spherical particles. Studies so far have only considered the
behaviors of an isolated semiflexible polymer chain �17� and
dilute solutions of rodlike polymers near spherical particles
�18–21�. Scaling analysis and mean field theories have been
presented for the structure of semiflexible polymer solutions
and melts near flat surfaces �22–24�. To the best of our
knowledge, there are no prior theoretical or numerical results
which quantify the structure of semiflexible polymer solu-
tions �at finite concentrations� near spherical particles.

This article presents a polymer self-consistent field theory
based numerical analysis of the structure of semiflexible
polymer solutions around spherical probes. We focus on the
case where the polymers do not have any energetic interac-
tions with the particle, and hence the model we consider is
the case of a hard sphere inserted into a solution of semiflex-
ible polymers. The polymers are expected to be depleted
around the particle leading to an energetic cost of insertion of
the particle. The present study is motivated by two issues.

�i� We desire to develop a fundamental understanding of
the polymer concentration, polymer flexibility, and particle
size dependencies of the insertion free energies of spherical
probes in semiflexible polymer solutions. Indeed, many mod-
els for protein stability, partitioning and diffusion coefficients
require knowledge of the insertion free energy and its scaling
with sizes and concentrations �25–27�. We note in this regard
that experiments which have examined properties such as the
solubility of small particles in semiflexible polymer solutions
have come to varied conclusions on their parametric de-
pendcy upon the particle size R and polymer segment con-
centration �. Explicitly, quantities �P� such as solubility, in-
sertion probability, and particle mobility �related to the
exponential of the insertion free energy� have been described
by functional forms �27–29�:

P = exp�− �R���� �1�

with the exponents ��1–2 and ��0.5–1, and � a numeri-
cal constant. A clear explanation for the range of experimen-
tal results noted, and theoretical predictions for P does not
exist. In this work we address this question explicitly and
present numerically determined scaling laws which sheds
light �at a mean-field level� on the range of exponents re-
ported in experiments.

�ii� A second motivation for this article is to present a
numerical apporach for the solution of the self-consistent
field theory equations for semiflexible polymer solutions
around spherical particles. SCFT equations for semiflexible
polymers have been presented and numerically solved in ear-*Author to whom correspondence should be addressed.
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lier contexts relating to block copolymers �30�, polymer so-
lutions �31�, and polymer melts near flat surfaces �24�. How-
ever, to our knowledge there has been no earlier work which
has presented the numerical solution of the equations for
situations embodying spherical symmetry. As we demon-
strate later, spherical symmetry brings in some new features
to the formulation and the resulting equations to be solved.
We present the theoretical details and the numerical solution
procedure for the resulting model. We note that with appro-
priate modifications, the formulation presented in this article
may also be adapted for addressing the structural properties
of isolated semiflexible polymers and their solutions con-
fined in spherical geometries. We will address the latter issue
in a subsequent article with special reference to its implica-
tions for DNA packaging problems.

The rest of this article is organized as follows. In Sec. I
we present our model for semiflexible polymers, the formu-
lation accounting for the spherical symmetry and the numeri-
cal solution procedure. The next two sections focus on the
density profiles and the depletion thicknesses around a flat
plate and a spherical particle. The results in the context of
flat plates provide important insights on the different length
scales and their interplay in determining the overall depletion
thickness. We invoke physical arguments based on random
phase approximation to extract numerical scaling laws de-
scribing the dependencies of the depletion thicknesses as a
function of the different parameters. In the Sec. IV we
present our results for insertion free energies of spherical
particles and conclude with a few comments on the implica-
tions of our results for the context of the abovementioned
experiments.

I. MODEL AND NUMERICAL DETAILS

A. Model and mean field limit

We consider a model for a solution of semiflexible poly-
mers in the presence of a single spherical particle. We adopt
a grand canonical formalism for the polymer solution and
use the Kratky-Porod �KP� model to describe the conforma-
tions of the semiflexible polymers �32,33�. In the KP model,
the polymer chains are represented by continuous space
curves Ri�s�, where i indexes the different polymer chains
and s denotes the arc length variable running from 0 to the
contour length L. The bonded interactions in the KP model
are quantified by an elastic bending energy of the form

�U0 =
�

2 �
i=0

� �
0

L

ds�dui�s�
ds

�2

, �2�

where u�s�	dR /ds represents the tangent vector to the
chain at the contour location s and is constrained to be a unit
vector. � represents the bending elasticity of the polymer,
and is in turn directly proportional to its persistence length.
To describe the excluded volume interactions between the
different segments of the chain, we adopt the commonly used
binary interaction model �34�:

�U1 =
v
2�

i=0

�

�
j=0

� �
0

L

ds�
0

L

ds���Ri�s� − R j�s��� , �3�

where ��¯� represents the delta function enforcing locally
the exclusion of overlaps of monomers, and v represents the
strength of the excluded volume interactions.

In the grand canonical framework, the partition function
of the polymer solution at an activity coefficient zp can be
expressed as �33,35�

	�zp,V,T� = �
n=0

�
zp

n

n!
� 


i=1

n

dRi�s�exp�− U0 − U1�




s

��ui�s� −
dR

ds
���
ui�s�
 − 1� . �4�

The above represents a functional integral over the different
space curves Ri�s� statistically weighted by the Boltzmann
factor corresponding to the energetic interactions U0 and U1.
The first � function above is used to enforce the constraint
that u�s� represents the tangent vector at the chain at the
location s, whereas the second delta function enforces the
fact that u�s� is of magnitude unity. The above partition func-
tion can be transformed by using standard functional integral
methods into a field theory where the fundamental degrees of
freedom is a fluctuating potential field w�r� �35�

	 = �
−i�

i�

Dw exp�− �H�w�r��� , �5�

where

− �H�w�r�� =
1

2B
� drw2 +

�

B
� drw + Ze−�Q�w� . �6�

In the above, all length scales have been nondimensionalized
by L. The constants B	vN2 /Ld and Z	zpLd represents the
nondimensional excluded volume parameter and the activity
coefficient of the polymer solution. The constant � satisfies
�=BZ exp�−��, and is chosen so as to subtract out the free
energy corresponding to a homogeneous polymer solution. Q
represents the partition function of a single chain in the ex-
ternal potential field w�r�, and is given as

Q =� q�r,u,1�drdu , �7�

where the field q�r ,u ,s� satisfies the equation �32,33�

�q�r,s�
�s

= − u · �rq +
1

2�
�u

2q�r,s� − w�r�q,

q�r,u,s = 0� = 1. �8�

Physically, q�r ,u ,s� quantifies the statistical weight that a
wormlike chain experiencing a potential w�r� has its segment
s at position r and with orientation u. In the above equation,
�	� /N and represents the persistence length of the polymer
expressed in units of the total contour length L. Using stan-
dard thermodynamic identities, the average homogeneous
polymer solution density �nondimensionalized as C
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	�Ld /N� can be expressed in terms of the chemical poten-
tial Z as C=Z exp�−��.

The polymer self-consistent field theory �SCFT� corre-
sponds to a saddle point approximation of the above field
theory �35�. In this framework, the integral over the potential
field w�r� in Eq. �5� is replaced by the value of the exponent
evaluated at its saddle point. Explicitly, the saddle point field
w*�r� is given as

w*�r� = BC���r� − 1� , �9�

where the volume fraction field ��r� is obtained from
q�r ,u ,s� as �33�

��r� =
1

4

� du�

0

1

dsq�r,u,s;�w*��q�r,− u,1 − s;�w*�� .

�10�

Implementation of SCFT for different situations require the
iterative solution of w*�r� which simultaneously satistifies
Eqs. �9� and �10� �recall that q�r ,u ,s� depends on w�r�
through Eq. �8�� subject to appropriate externally imposed
constraints. In the specific case of polymer solutions near
spherical particles, the influence of the particle is trans-
formed as a boundary condition

q�r = R,u,s� = 0 �11�

imposed on the surface of the sphere �8�. The self-consistent
solution of Eqs. �8�–�11� then provides a mean-field ap-
proach to compute the grand canonical partition function
H�w*�r�� and the polymer volume fraction profiles ��r� as a
function of the polymer chemical potential Z and the ex-
cluded volume parameter B. Knowledge of ��r� allows us to
determine an overall depletion thickness � defined as the
equivalent radius of a shell over which a step function profile
for the polymer density would be depleted �36�. In other
words � is defined through

4


3
��R + ��3 − R3� = 4
�

R

�

drr2���r� − 1� . �12�

B. Numerical solution procedure

In general, the diffusion equation �8� does not admit an
analytical solution. For the limit N→�, an approach termed
as ground-state dominance allows one to simplify the equa-
tions and obtain analytical solutions for a few special cases
�9,23�. Since our objective in this article is to examine the
depletion characteristics for a range of particle sizes and con-
centration conditions, we resort to a numerical solution of
Eq. �8�. In solving Eq. �8� for polymer solution near a spheri-
cal particle, we exploit the fact that q�r ,u ,s� possesses the
symmetry

q�r,u,s� 	 q�r,u · er,s� , �13�

where r denotes the radial distance from the center of the
sphere and er represents the unit radial vector �relative to an
origin placed at the center of the sphere� at the location r. By
adopting a local coordinate system centered on r with er

representing the Z axis and u ·er=cos �, we can transform
Eq. �8� as

�q�r,�,s�
�s

= − cos �
�q

�r
+

sin �

r

�q

��
+

1

2�

1

sin �

�

��
�sin �

�q

��
�

− w�r�q, q�r,�,s = 0� = 1. �14�

Equation �14� forms the starting point for analyzing the
configurations of semiflexible polymers in situations em-
bodying spherical symmetry. We note that a convenient way
to solve Eq. �14� is by expanding q�r ,� ,s� in Legendre poly-
nomials as �37�

q�r,�,s� = �
l

ql�r,s�Pl�cos �� , �15�

where Pl represents the lth order Legendre polynomial. By
using the properties of Pl, equation �14� can be transformed
as �37�

�ql

�s
= −

l + 1

2l + 3

�ql+1

�r
−

l

2l − 1

�ql−1

�r
−

�l + 1��l + 2�
2l + 3

ql+1

r

+
l�l − 1�
2l − 1

ql−1

r
−

l�l + 1�
2�

ql − w�r�ql, �16�

subject to

ql�r = R,s� = 0,

ql�r,s = 0� = �l,0. �17�

Moreover, Eq. �10� can be recast in terms of ql�r ,s� as

� = �
0

1

ds�
l
�ql�r,s�ql

†�r,1 − s�
2l + 1

� , �18�

where ql
†�r ,s� satisfies

�ql
†

�s
=

l + 1

2l + 3

�ql+1
†

�r
+

l

2l − 1

�ql−1
†

�r
+

�l + 1��l + 2�
2l + 3

ql+1
†

r

−
l�l − 1�
2l − 1

ql−1
†

r
−

l�l + 1�
2�

ql
† − w�r�ql

†, �19�

subject to

ql
†�r = R,s� = 0,

ql
†�r,s = 0� = �l,0. �20�

Our model is governed by three parameters: the nondi-
mensionalized radius of the particle R, persistence length �,
the excluded volume parameter B, and the bulk concentration
of the polymer C. As seen from the above equations, in the
mean-field limit, the parameters B and C appear only as the
combination BC in determining the density profiles ��r�. For
the numerical results presented in the subsequent sections,
we varied R �nondimensionalized by L� in the range 0.01–5,
� in the range 0.001–1, and BC in the range 0.01–100. This
range of parameters allowed us to cover the regimes of par-
ticle sizes where R was the smallest length scale to the re-
gime where the curvature of the particle was inconsequential.
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Moreover, the range of � chosen allowed us to span the
regimes of flexible to rodlike polymers. The values of B and
C covered the regimes ranging from dilute to concentrated
polymer solutions.

The numerical results for ��r� �methodology discussed
below� are embedded within an iterative loop for determin-
ing the mean-field potential w*�r�. The latter is accomplished
by a real-space procedure identical to the one proposed by
Fredrickson and Drolet �40�, where w

i
*�r�, the guess for

w*�r� at the ith step is evolved as

w
i+1
* �r� = w

i
*�r� + ��BC��„r;w

i
*�r�… − 1� − w

i
*�r�� . �21�

An �=0.005 allowed us to attain convergence within few
thousand iterations when starting from random initial condi-
tions.

To obtain ��r� for a given potential field w
i
*�r�, we solved

equations �16� and �19� numerically by using a two-step Lax-
Wenderoff �LW� method similar to the one suggested in
Daoulas and co-workers �24,38�. Truncation of the Legendre
polynomial expansion �15� at l=12 was found to ensure suf-
ficient convergence of the density profiles. The presence of
the discontinuous boundary condition at r=R leads to nu-
merical oscillations near the surface, which is a well-known
artifact in the solution of hyperbolic partial differential equa-
tions �39�. To lucidate this, we display in Fig. 1�a� represen-
tative volume fraction profiles determined for radius R=0.1
and persistence lengths �=0.001, 0.01, 0.1, and 1.0. While
the physical differences between the behaviors for these pa-
rameters constitute the focus of subsequent sections, the
above discussed oscillations are certainly visible in the nu-
merical results. We note that such artifacts become less pro-
nounced for situations involving larger radii and/or smaller
rigidity. Within the numerical schemes explored for this
work, we were never able to completely eliminate such nu-
merical oscillations. Instead, we adopted a two pronged strat-
egy to account for such oscillations. �i� We used a one step
Lax method close to the surface which is transitioned to the
two step LW method �38�. �ii� We used a numerical smooth-
ing procedure which averages out the oscillations to deduce a
smooth variation in the density profile. We repeated the pre-
ceding steps with different discretizations to ensure numeri-

cal accuracy. The equations were typically solved by using a
r discretization in the range 1–2.5
10−3 and a �s=1 /2000.
The resulting density profiles were used to determine the
depletion thicknesses which are discussed in the subsequent
sections. In Fig. 1�b� we display the “smoothed” density
plots corresponding to the original figures displayed in Fig.
1�a�.

II. DEPLETION NEAR FLAT SURFACES

In this section, we present the numerical results for deple-
tion thicknesses around large spherical objects and flat
plates. In such a case, the polymer solution density profiles
are independent of R and, hence,

� f = f�BC,�� . �22�

Shown in Fig. 2 are our numerical results for � f displayed as
a function of BC for different values of persistence lengths
�. We observe that at very low concentrations, the depletion
thicknesses plateaus to a concentration independent value.
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FIG. 1. �Color online� An illustration of the numerical issues and our procedure to resolve it. �a� Representative volume fraction profiles
��r� for R=0.1 and � values indicated in the figure. �b� Smoothed density profiles corresponding to the numerical results of �a�.
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FIG. 2. �Color online� Depletion thicknesses � f near flat plates
as a function of the parameter BC for different persistence lengths
�.
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Upon increasing the polymer concentrations, � f is seen to
decrease monotonically with concentration. Qualitatively,
� f�C→0� is expected to be representative of the size of an
isolated semiflexible polymer chain, and hence, it is easy to
understand that an increase in the rigidity of the polymer
segments �the parameter �� leads to a corresponding increase
in the depletion thickness � f. The influence of polymer con-
centrations can also be rationalized by noting that at higher
concentrations the depletion thickness is expected to become
related to the correlation length of density fluctuations in the
polymer solution. The latter monotonically decreases with
increasing polymer concentrations thereby explaining the be-
havior of the depletion thickness.

How do the quantitative details of the behavior observed
in Fig. 2 compare with corresponding theoretical predic-
tions? We first compare our numerical results ��C→0� with
the theoretical prediction for the nondimensional size of a
semiflexible polymer chain �41�

Rg��� = �1/2�1

9
−

�

3
+

2

3
�2 +

2

3
�− 1 + exp�− 1/����3�1/2

.

�23�

In Fig. 3�a�, we compare ��C→0� alongside the above re-
sult, and observe that Eq. �23� provides an excellent fit to our
results. This confirms our hypothesis that for dilute solutions,
the depletion thickness is proportional to the size of the poly-
mer chain and is given �the prefactor determined based on
the fit to numerical data� as

� f�C → 0� = 1.7�1/2�1

9
−

�

3
+

2

3
�2

+
2

3
�− 1 + exp�− 1/����3�1/2

. �24�

To understand quantitatively the origins of the concentra-
tion dependence of � f, we note that for flexible polymer
solutions, previous theoretical researches have confirmed
that a correlation length derived based on random phase ap-
proximation �RPA� accurately models the mean-field concen-
tration dependence of the depletion thickness near flat plates.
Whence, it is of interest to compare our above results to the
corresponding RPA predictions of correlation lengths for
semiflexible polymer solutions �RPA. Doi and co-workers
considered the KP model for semiflexible polymers and de-
rived a prediction for �RPA as �in our notation and nondimen-
sional variables� �41�

�RPA � Rg����BC + 1�−1/2, �25�

where Rg��� is given by Eq. �23�. In Fig. 2�b�, we compare
the above with our numerical results by considering the ratio
� f /� f�C→0� �thereby normalizing the factor Rg���� as a
function of BC. It is seen that that our numerical results are
not consistent with the behavior expected for �RPA. Explic-
itly, we observe for large � the concentration decay is stron-
ger than predicted, while for smaller persistence length � the
concentration decay is weaker than that expected for �RPA.
These results suggest that the depletion thicknesses exhibits
a much more complex dependence on � and BC than that

embodied in the RPA prediction for the correlation length
�RPA.

To gain more insight into the above discrepancies, we
consider the RPA approximation for the density correlation
function gRPA�q� for semiflexible polymer solutions. While
an exact expression for gRPA�q� does not exist, approximate
functional forms have been proposed in Marques and Fre-
drickson �42� and Netz et al. �43�. We adopt the results of
Netz et al. which yields �in units of q normalized as qL�

gRPA
−1 �q� =

����q2

1 + ����q/�6

+ BC + 1, �26�

where the function ���� is given as

���� = ��1

9
−

�

3
+

2

3
�2 +

2

3
�− 1 + exp�− 1/����3� ,

�27�

and is identical to the functional form for nondimensional
Rg

2��� �Eq. �23��. From Eq. �26� we deduce that
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FIG. 3. �Color online� �a� A comparison of � f�C→0� �displayed

as points� with the theoretical predictions for the size of a semiflex-
ible polymer chain �solid line�. �b� � f /� f�C→0� for polymer solu-
tions of different persistence lengths. Dotted line represents the the-
oretical prediction for �RPA /�RPA�C→0�.
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gRPA�q� � ��q�6
 + BC + 1�−1, q� � 1,

�q2� + BC + 1�−1, q� � 1.
� �28�

From Eq. �28� it is evident that gRPA is a function of three
nondimensional length scales �RPA	����1/2�BC+1�−1/2,
����, and �BC+1�−1. For � /�RPA�1, the decay behavior of
gRPA is dominated by �RPA	�1/2����BC+1�−1/2. Using Eqs.
�25� and �27� we observe that this regime occurs when the
correlation length �RPA is larger than the persistence length
of polymer, which corresponds to the “flexible” limit of the
semiflexible polymer solution. In such a case, we expect the
depletion thickness to be closely related to �RPA. In contrast,
for � /�RPA�1 the decay behavior of gRPA is determined by
an interplay of the length scales �RPA and �BC+1�−1

	�RPA
2 /�. This regime ccurs for �RPA�� or the “rigid” limit

of the semiflexible polymer solution. In such a case, we
might expect the depletion thickness also to reflect an inter-
play between the preceding two length scales.

The above reasoning can be encapsulated in a scaling pro-
posal for the depletion thickness � f as

� f

�
= f� �

�RPA
� , �29�

with f�x� expected to behave as

f�x� � �x−1, x � 1,

x−2 x � 1.
� �30�

This hypothesis is tested in Fig. 4 by considering the ratio
� f /� as a function of � /�RPA �to ensure consistency, we used
the numerical values for � f�C→0� in place of �1/2�. It is
observed that in the above representation, f�x� exhibits a
behavior of x−0.97 for x�1 which crosses over to x−1.47 for
x�1. While we do not observe the crossover to the exponent
−2 predicted for x�1, we speculate that the transition from
the exponent −1 to −1.47 is strongly suggestive of the cross-
over to the asymptotic scaling behavior and hence consider
the numerical results in Fig. 4 to be in good agreement with
the hypothesis and scaling predictions underlying Eq. �30�.

In summary, our numerical results for the depletion of
semiflexible polymers near flat objects suggests a complex
interplay between the persistence length � and the correla-
tion length of the semiflexible polymer �RPA. Explicitly, for
the flexible limit of semiflexible polymers, we predict that
the depletion thickness scales as the correlation length of the
polymer solution. In contrast, for the limit of rigid polymers
and rod solutions, our numerical results suggests that the
density profiles exhibits an interplay between two length
scales. Overall, this results in a scaling collapse of the deple-
tion thickness as a function of the ratio � /�RPA, and provides
a quantitative prediction for use in experiments measuring
the depletion thicknesses of semiflexible polymers near flat
plates.

III. DEPLETION NEAR SPHERICAL OBJECTS

Next, we consider the depletion characteristics of semi-
flexible polymers around spherical objects which brings to
fore an additional length scale, viz., the radius of the particle
R. It is commonly supposed that for particle sizes R much
larger than the flat plate depletion thickness � f, curvature
effects are negligible and that the depletion thickness around
the spherical particles �R�� f �11�. The issue we address in
this section is whether this consideration is indeed true for
solutions of semiflexible polymers, and the implications of
the persistence length-correlation length interplay noted in
the preceding section. Due to numerical limitations however,
we could only probe regimes such that R /� f �0.3. Conse-
quently, while we were able to address the relevance of cur-
vature effects, our results do not allow us to draw concrete
scaling conclusions regarding the behavior of depletion
thicknesses for very small radii.

To render the parameter space tractable, we work in non-
dimensional variables. Explicitly, based on the parametric
considerations discussed in the preceding section, we expect
that

�R = f�BC,�,R� . �31�

Using the fact that � f is a function of the parameters BC and
�, the above can be rewritten as

�R = f�� f,�,R� . �32�

Since we expect that the different quantities become inde-
pendent of the contour length for large contour lengths, the
above representation can be expressed in terms of three non-
dimensional combinations �R /R, R /� f, and R /� as

�R

R
= f� R

� f
,
R

�
� �33�

�we adopt this representation since it provides a better physi-
cal representation of some of the scaling collapses discussed
below�.

In Fig. 5 we display our numerical results for depletion
thicknesses �R /R as a function of R /� f for different values
of R /�. To aid in the discussion, we have separated these
results into three regimes:

�a� Figure 5�a� pertains to the results for R /� f �10 and
for the entire range of R /� examined. It is seen that all the
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FIG. 4. �Color online� A test of the scaling proposal of Eqs. �29�
and �30�.

GANESAN, KHOUNLAVONG, AND PRYAMITSYN PHYSICAL REVIEW E 78, 051804 �2008�

051804-6



data for R /� f �10 collapse onto a single curve which is
independent of the value of R /� and has a power-law slope
of �−1. This suggests that for this regime

�R

R
�

� f

R
, �34�

or � f ��R. This result reinforces the intuitive expectation
that for very large particles �relative to the depletion thick-

ness in the flat plate regime� the depletion thickness is inde-
pendent of the curvature of the particles.

�b� Figure 5�b� displays the results of �R /R for 0.3
�R /� f �10 for the regime R /��4. We observe that our
numerical results exhibit a scaling collapse of the form

�R

R
� �� f

R
�−0.93

, �35�

which is independent of the R /� considered. Whence we
conclude that for large values of R /�, the curvature of the
particles has only a small influence on the depletion thick-
ness even upto the regime R�� f and

�R � � f . �36�

�c� Figure 5�c� displays the results of �R /R for the regime
0.3�R /� f �10 for the regime R /��4. In contrast to the
behavior noted for larger values of R /�, we observe that
�R /R now displays a strong dependence on the radius rela-
tive to the persistence length of the polymer. Explicitly, we
observe that the �R /R exhibits a scaling of the form

�R

R
� � R

� f
�−�

, �37�

with an exponent ��1 �quantifying the deviation from the
flat plate behavior�, decreasing monotonically with lowering
of R /�. Moreover, it is seen that the radius at which the
depletion thicknesses start to deviate from the flat plate re-
gime also explicitly depends upon the ratio R /�, with devia-
tions observed at larger radii for smaller R /� values.

A physical basis for the above trends can be obtained by
combining the insights gleaned in the preceding section with
the hypothesis that curvature effects manifest when the ra-
dius of the particles becomes comparable to length scales at
which density variations occur near a flat plate. For the case
where � is small �the “flexible” limit of the semiflexible
polymer�, we suggested that the density profiles near a flat
plate exhibit variations on a single length scale �RPA and
hence � f ��RPA. In such regimes, curvature effects are also
expected to occur only when R��RPA	� f. Moreover, cur-
vature effects are expected to be only a function of R /� f and
hence independent of the ratio R /� �except insofar as the �
dependence embodied in � f�. This reasoning rationalizes the
behavior noted in Fig. 5�b�, where for large values of R /�
the curvature effects did not impact the depletion thickness
up until the regime R�� f, and the deviation from the flat
plate scaling �an exponent of 0.93 versus an exponent of 1.0�
was independent of R /�.

In contrast, for larger � �the rigid polymer limit�, we sug-
gested that the density profiles near a flat plate might exhibit
a two length scale behavior which depends on �RPA and
�RPA

2 /���� with � f determined by their interplay �see Eq.
�30��. Since the density profiles exhibit variations on the
length scale �RPA, in this regime also we may expect
curvature-induced deviations to begin when R��RPA. Since
the length scales follow the hierarchy �RPA�� f ��RPA

2 /�,
the curvature induced deviations occur for R�� f. Moreover,
using Eq. �30� we have
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FIG. 5. �Color online� Depletion thicknesses �R normalized by
the radius R represented as a function of the depletion thicknesses
near a flat plate �inversely normalized by R�. �a� Numerical results
for R /� f �10 for different radii R and persistence lengths � �to
maintain clarity, we do not distinguish the different � values by
specific symbols�. �b� Numerical results for R /� f �10 for different
R /� indicated. �c� Numerical results for R /� f �10 for different
R /� indicated. Numbers in the parenthesis correspond to the expo-
nents of a power law fit of the data.
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R

� f
=

R

�
� �

����
��

,

with ��0 ��=−0.47 in our numerical results, and expected
to be −1 in the asymptotic scaling regime�. When R��, we
have

R

� f
� � R

����
��

. �38�

Since ���� is a monotonically increasing function of � �see
Eq. �27��, the above suggests that the curvature-induced de-
viations in this regime occur at larger values of R /� f for
systems with smaller values of R /�. This reasoning rational-
izes the behavior observed in Fig. 5�c�, where indeed stron-
ger deviations beginning at larger values of R /� f where
noted for systems with smaller R /� values.

Due to the complex two parameter scaling expected for
the regime depicted in Fig. 5�c�, we are unable to propose a
simple scaling collapse of the data. However, for the pur-
poses of quantitative comparisons, we empirically fitted the
data for R /��2 and extracted a power law profile of the
form �fit displayed in Fig. 6�:

�R

R
� � R

� f
�−0.86�R

�
�0.17

, 0.1 � R/� f � 10. �39�

Considering the nonanalytic nature of the different exponents
above, we speculate that the above scaling is not a manifes-
tation of a distinct physical phenomena but rather a reflection
of the crossover to the situation of very small particles. Un-
fortunately, due to numerical limitations we are unable to
probe the latter regime to determine the precise asymptotic
scaling laws.

In sum, our numerical results for the curvature depen-
dence of the depletion thickness indicates novel behavior
which sensistively depends on the persistence length of the
polymer relative to the radius of the particle. For the case
when the persistence length of the polymer is smaller than
the radii, the depletion thickness was shown to exhibit very
little curvature dependence, even for radii as small as R /� f
and R /�RPA�0.5. In contrast, for R /��1 and R /� f �10,

the depletion thickness starts to exhibit a curvature depen-
dence for radii R�O���, with the intensity of the curvature
dependence monotonically increasing with an increase in the
ratio � /R.

The above results serve to higlight the subtleties in the
depletion characteristics involving semiflexible polymers and
small probes. Explicitly, the flexible limit is shown to behave
quite differently from the rigid limit of the semiflexible poly-
mers in their respective curvature dependencies of the deple-
tion thickness �and correspondingly the free energies of in-
sertion, as demonstrated in the next section�. This revises the
accepted wisdom that the curvature dependence of depletion
thicknesses for polymer solutions occurs for particle sizes
comparable to or smaller than the the depletion thicknesses
for flat plates. Instead, we suggest that the such a notion is
true only for solutions of flexible semiflexible polymers. In
contrast, for rigid semiflexible polymer solutions, due to the
disparity between the correlation length and the depletion
thickness of the polymer solution, curvature effects manifest
at a length scale much larger than the depletion thickness for
flat plates.

IV. INSERTION FREE ENERGY

In this final section, we consider the dependence of the
insertion free energy of the particles as a function of the
different parameters in the system. As we will demonstrate,
the insertion free energy of small particles is intimately tied
to the depletion thickness �R. Whence, the understanding
developed in the preceding sections proves crucial in ex-
plaining the characteristics of the insertion free energies.

To deduce the insertion free energies, the free energy ex-
pression �6� is computed relative to the homogeneous solu-
tion for different parameters. The insertion free energy F1 of
a particle of size R can be expected to be expressed as �44�

F1 = �
4

3

R3 + 4
R2� . �40�

In the above, the first term represents the volumetric energy
contribution arising from the work needed to create a cavity
of size R, and is expressed as the osmotic pressure of the
solution � multiplying the volume of the particle. For the
mean-field situation considered in this article, we have for
the nondimensionalized osmotic pressure

�Rg
d

kBT
= C +

BC2

2
, �41�

and hence the parametric dependence of the first term in Eq.
�40� can be considered as understood. The second term in
Eq. �40� represents the energy penalty arising from the inter-
facial tension �. The latter arises explicitly due to inhomo-
geneous density variations induced by the introduction of the
particle, and is expected to dominate the insertion free en-
ergy for small particles.

In this section, we consider the numerical results for the
interfacial tension term � and rationalize our results by con-
sidering the explicit dependence of � on the other param-
eters. Explicitly, we expect that for regimes where curvature
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FIG. 6. �Color online� Empirical fit of �R /R to the parameter
R / 
� f.

GANESAN, KHOUNLAVONG, AND PRYAMITSYN PHYSICAL REVIEW E 78, 051804 �2008�

051804-8



effects do not play a significant role �see previous section�, �
itself will be independent of R and only dependent on B, C,
and �. In contrast, we expect that in regimes where curvature
effects manifest � would also become dependent on the cur-
vature in a manner similar to the Tolman corrections noted
for the curvature dependence of surface tension for gas-
liquid interfaces �44,45�. To render the analysis tractable, we
again resort to a nondimensional framework, and nondimen-
sionalize � with the variable �R. Using �R= f�BC ,� ,R�, we
expect

� 	
�

�R
= f��R

R
,
�

R
� . �42�

In Fig. 7 we display our results for � as a function of �R /R
for different radii. We observe that in this representation, the
� values collapse onto a single universal curve which is
�practically� independent of the specific � /R values. More-
over, we observe that the functional form of the curve can be
well fit to a quadratic of the form

� = a��R

R
� + b��R

R
�2

, �43�

where a and b are O�1� constants determined by fitting our
data. On physical terms, the above results can be understood
based on the arguments used to motivate the nondimension-
alization of �. One way to think about the interfacial tension
term is to think of it physically as the osmotic pressure con-
tribution arising from the evacuation of polymers from a
layer of thickness �R surrounding the particle. For �R�R,
we expect this energetic term to be of the form 4
R2�R�,
i.e., ���R�. These considerations lead to

� �
�R

R
, �44�

a functional form which is close to the result obtained by
fitting our data. The second term in the fit of our numerical
results can be understood as a manifestation of the curvature
effects on � which arises for the case when the depletion
thicknesses become comparable to or larger than the radius
of the particle.

We now discuss the implications of our results in the con-
text of the experimental observations mentioned in the Intro-
duction. Explicitly, our numerical results indicate that the
insertion free energy for a spherical particle in a semiflexible
polymer solution follows a functional relationship of the
form

F1 = �
4

3

R3�1 + 1.95

�R

R
+ 6.8��R

R
�2� for

�R

R
� 3.0.

�45�

It can be see that the size dependence of the insertion free
energy exhibits a complex functional form which depends on
R through through both the osmotic pressure and interfacial
tension term. For large particles, the first term above is ex-
pected to dominate and the insertion free energy scales as R3

and will exhibit a concentration dependence identical to that
of the osmotic pressure. For smaller particles, the interfacial
tension terms are expected to dominate and the insertion free
energy is expected to be a function of �R /R. In such a case,
using the results discerned in Eqs. �29�, �30�, and �39� we can
deduce that depending on the regime of values for �R /R, F1
can exhibit a particle size scaling dependence of the form R�

with � in the range 1–2. In a similar manner, the concentra-
tion dependence of the insertion free energy is also expected
to exhibit a complex dependency on the parameters BC and
� whose functional form �not expressible as a simple power
law� depends on the value of radius of the particle relative to
the depletion thickness. These insights may serve to explain
the different functional forms and exponents noted in the
experimental literature regarding the solubility and mobility
of small particles and proteins in semiflexible polymer solu-
tions �27�.

V. CONCLUSIONS AND OUTLOOK

In this article, we presented a numerical approach to the
solution of the self-consistent field theory for the structure of
semiflexible polymer solutions near spherical surfaces. We
used the framework to study the depletion characteristics of
semiflexible polymers near colloids and nanoparticles. Our
results suggest that the depletion characteristics of semiflex-
ible polymers exhibit more complex parametric dependen-
cies than their flexible counterparts. Explicitly, the polymer
density profiles �and the depletion thicknesses� were shown
to be depend sensitively on the polymer concentrations, the
persistence lengths and the radius of the particles. Broadly,
two categories of features were identified based on the rela-
tive ratios of the persistence lengths to the correlation length
of the polymer solution. For the flexible limit of semiflexible
polymers, the correlation length proves to be the critical
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FIG. 7. �Color online� Numerical results for the normalized in-
terfacial tension � as function of �R /R for different radii. The re-
sults exihibit only little dependence on the specific � values �cho-
sen in the range 0.001–1�. Hence, to maintain clarity we do not
distinguish the different � values in the plot. The above results are
well-fit by an indicated quadratic function of the form f�x�=0.65x
+2.28x2.
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length scale governing both the depletion thickness and the
curvature effects. In contrast, for the rigid limit of the semi-
flexible polymer solutions the depletion thickness and the
curvature effects were shown to be dependent on a length
scale which was determined by an interplay between the per-
sistence lengths and the correlation length. This led to non-
trivial scaling laws governing the concentration and radii de-
pendence of the depletion thicknesses. Our study also
highlighted the manner in which the above features impact
upon the insertion free energies of small probes in semiflex-
ible polymer solutions.

Several directions present itself for future study. The
framework presented in this article can be straightforwardly
used to address the properties of confined semiflexible poly-
mers and their solutions. As mentioned earlier, the results of
such cases has attracted significant interest in the context of

the DNA packaging context. Another extension of the
present study would be to address the effect of attractive
interactions between the polymer and probes. Such effects
are bound to be of importance in biological contexts, and
compared to the case of flexible polymers, the results for
semiflexible polymers are still lacking.

ACKNOWLEDGMENTS

This work was supported in part by a grant from Robert
A. Welch Foundation, the US Army Research Office under
Grant No. W911NF-07-1-0268 and American Chemical So-
ciety Petroleum Research Fund grant. A part of this work
was accomplished while one of the authors �V.G.� was on
leave at the Indian Institute of Science, Bangalore.

�1� A. J. Levine and T. C. Lubensky, Phys. Rev. Lett. 85, 1774
�2000�.

�2� D. T. Chen, E. R. Weeks, J. C. Crocker, M. F. Islam, R. Verma,
J. Gruber, A. J. Levine, T. C. Lubensky, and A. G. Yodh, Phys.
Rev. Lett. 90, 108301 �2003�.

�3� B. S. Chae and E. M. Furst, Langmuir 21, 3084 �2005�.
�4� J. Y. Huh and E. M. Furst, Phys. Rev. E 74, 031802 �2006�.
�5� V. Pryamitsyn and V. Ganesan, Phys. Rev. Lett. 100, 128302

�2008�.
�6� D. Hall and A. P. Minton, Biochim. Biophys. Acta 1649, 127

�2003�.
�7� N. Kozer and G. Schreiber, J. Mol. Biol. 336, 763 �2004�.
�8� M. Surve, V. Pryamitsyn, and V. Ganesan, J. Chem. Phys. 122,

154901 �2005�.
�9� P.-G. de Gennes, Scaling Concepts in Polymer Physics �Ox-

ford University Press, Oxford, 1979�.
�10� P.-G. d. Gennes, C. R. Hebd. Seances Acad. Sci., Ser. A B, Sci.

Math. Sci. Phys 288, 359 �1979�.
�11� J. F. Joanny, L. Leibler, and P. G. De Gennes, J. Polym. Sci.,

Polym. Phys. Ed. 17, 1073 �1979�.
�12� E. J. Meijer and D. Frenkel, Phys. Rev. Lett. 67, 1110 �1991�.
�13� T. Odijk, Macromolecules 29, 1842 �1996�.
�14� A. Hanke, E. Eisenriegler, and S. Dietrich, Phys. Rev. E 59,

6853 �1999�.
�15� M. Fuchs and K. S. Schweizer, J. Phys.: Condens. Matter 14,

R239 �2002�.
�16� A. A. Louis, P. G. Bolhuis, E. J. Meijer, and J. P. Hansen, J.

Chem. Phys. 117, 1893 �2002�.
�17� R. R. Netz and J. F. Joanny, Macromolecules 32, 9026 �1999�.
�18� Y. Mao, P. Bladon, H. N. W. Lekkerkerker, and M. E. Cates,

Mol. Phys. 92, 151 �1997�.
�19� Y. Mao, M. E. Cates, and H. N. W. Lekkerkerker, J. Chem.

Phys. 106, 3721 �1997�.
�20� Y. L. Chen and K. S. Schweizer, J. Chem. Phys. 117, 1351

�2002�.
�21� Y. L. Chen and K. S. Schweizer, Langmuir 18, 7354 �2002�.
�22� D. W. Schaefer, J. F. Joanny, and P. Pincus, Macromolecules

13, 1280 �1980�.
�23� A. N. Semenov, Europhys. Lett. 9, 353 �2002�.
�24� K. C. Daoulas, D. N. Theodorou, V. A. Harmandaris, N. C.

Karayiannis, and V. G. Mavrantzas, Macromolecules 38, 7134

�2005�.
�25� N. L. Abbott, D. Blankschtein, and T. A. Hatton, Macromol-

ecules 24, 4334 �1991�.
�26� E. W. Merrill, K. A. Dennison, and C. Sung, Biomaterials 14,

1117 �1993�.
�27� B. Amsden, Macromolecules 31, 8382 �1998�.
�28� K. Luby-Phelps, Curr. Opin. Cell Biol. 6, 3 �1994�.
�29� R. J. Phillips, W. M. Deen, and J. F. Brady, AIChE J. 35, 1761

�1989�.
�30� M. W. Matsen, J. Chem. Phys. 104, 7758 �1996�.
�31� A. J. Spakowitz and Z. G. Wang, J. Chem. Phys. 119, 13113

�2003�.
�32� N. Saito, K. Takahashi, and Y. Yunoki, J. Phys. Soc. Jpn. 22,

219 �1966�.
�33� G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous

Polymers �Clarendon Press, Oxford, 2006�.
�34� M. Doi and S. Edwards, The Theory of Polymer Dynamics

�Oxford University Press, Oxford, 1986�.
�35� G. Fredrickson, V. Ganesan, and F. Drolet, Macromolecules

35, 16 �2002�.
�36� G. J. Fleer, A. M. Skvortsov, and R. Tuinier, Macromolecules

36, 7857 �2003�.
�37� J. D. Jackson, Classical Electrodynamics �Wiley, New York,

1975�.
�38� W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-

terling, Numerical Recipes in C: The Art of Scientific Comput-
ing, 2nd ed. �Cambridge University Press, Cambridge, 1992�.

�39� R. J. LeVeque, Numerical Methods for Conservation Laws
�Birkauser-Verlag, Basel, 1992�.

�40� F. Drolet and G. H. Fredrickson, Phys. Rev. Lett. 83, 4317
�1999�.

�41� T. Shimada, M. Doi, and K. Okano, J. Chem. Phys. 88, 7181
�1988�.

�42� C. M. Marques and G. H. Fredrickson, J. Phys. II 7, 1805
�1997�.

�43� P. Friedel, A. John, D. Pospiech, D. Jehnichen, and R. R. Netz,
Macromol. Theory Simul. 11, 785 �2002�.

�44� A. A. Louis, P. G. Bolhuis, E. J. Meijer, and J. P. Hansen, J.
Chem. Phys. 116, 10547 �2002�.

�45� J. S. Rowlinson, Molecular Theory of Capillarity �Clarendon
Press, Oxford, 1982�.

GANESAN, KHOUNLAVONG, AND PRYAMITSYN PHYSICAL REVIEW E 78, 051804 �2008�

051804-10


